Fast intersection of half spaces

نویسنده

  • Kevin Q. Brown
چکیده

T h e p r o b l e m of i n t e r s e c t i n g N h a l f s p a c e s in K s p a c e is t r a n s f o r m e d t o 2*K p r o b l e m s o f c o n s t r u c t i n g the c o n v e x hull of N p o i n t s in K s p a c e a n d a s i m p l e i n t e r s e c t i o n p r o b l e m . T h i s e n a b l e s one to i n t e r s e c t t h e N K d i m e n s i o n a l hal f s p a c e s in 0 < K * H ( N , K ) ) t i m e , w h e r e H(N,K) is the time r e q u i r e d to c o n s t r u c t the c o n v e x hu l l o f N p o i n t s in K s p a c e . F o r t w o a n d t h r e e d imens ions t h e a l g o r i t h m takes CKNIogN) t ime in t h e w o r s t c a s e , b u t u n d e r f a i r l y r o b u s t c o n d i t i o n s t h e e x p e c t e d t ime is o n l y 0 ( N ) . It is a l s o s h o w n t h a t a n a l g o r i t h m f o r i n t e r s e c t i o n of half s p a c e s c a n b e u s e d to c o n s t r u c t t h e c o n v e x hu l l o f p o i n t s in K s p a c e . T h u s , the i n t e r s e c t i o n o f hal f s p a c e s a n d c o n v e x h u l l o f p o i n t s p r o b l e m s a r e e s s e n t i a l l y e q u i v a l e n t . T h i s r e s e a r c h w a s p a r t i a l l y s u p p o r t e d b y the O f f i c e of N a v a l R e s e a r c h u n d e r c o n t r a c t n u m b e r N 0 0 0 1 4 7 6 C 0 8 2 9 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A special subspace of weighted spaces of holomorphic functions on the upper half plane

In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...

متن کامل

A Random Sampling Based Algorithm for Learning the Intersection of Half-spaces

We present an algorithm for learning the intersection of half-spaces in n dimensions. Over nearly-uniform distributions, it runs in polynomial time for up to O(log n= log log n) half-spaces or, more generally , for any number of half-spaces whose normal vectors lie in an O(log n= log log n) dimensional subspace. Over less restricted \non-concentrated" distributions it runs in polynomial time fo...

متن کامل

dominating subset and representation graph on topological spaces

Let a topological space. An intersection graph on a topological space , which denoted by ‎ , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of  and graph properties of ‎  are investigated. Also some classifications and representations for the graph ...

متن کامل

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

An Algorithm for Finding All Extremal Rays of Polyhedral Convex Cones with Some Complementarity Conditions

In this paper, we show a method for finding all extremal rays of polyhedral convex cones with some complementarity conditions. The polyhedral convex cone is defined as the intersection of half-spaces expressed by linear inequalities. By a complementarity extremal ray, we mean an extremal ray vector that satisfies some complementarity conditions among its elen~nts. Our method is iterative in the...

متن کامل

Tolerance analysis by polytopes: Taking into account degrees of freedom with cap half-spaces

To determine the relative position of any two surfaces in a system, one approach is to use operations (Minkowski sum and intersection) on sets of constraints. These constraints are made compliant with half-spaces of n  where each set of half-spaces defines an operand polyhedron. These operands are generally unbounded due to the inclusion of degrees of invariance for surfaces and degrees of fre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015